首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   857篇
  免费   41篇
  国内免费   4篇
测绘学   4篇
大气科学   79篇
地球物理   178篇
地质学   382篇
海洋学   87篇
天文学   88篇
自然地理   84篇
  2022年   2篇
  2021年   13篇
  2020年   18篇
  2019年   18篇
  2018年   20篇
  2017年   26篇
  2016年   32篇
  2015年   33篇
  2014年   29篇
  2013年   55篇
  2012年   41篇
  2011年   62篇
  2010年   46篇
  2009年   42篇
  2008年   48篇
  2007年   52篇
  2006年   50篇
  2005年   41篇
  2004年   23篇
  2003年   22篇
  2002年   26篇
  2001年   15篇
  2000年   18篇
  1999年   16篇
  1998年   10篇
  1997年   11篇
  1996年   9篇
  1995年   6篇
  1994年   8篇
  1993年   9篇
  1992年   8篇
  1991年   13篇
  1990年   3篇
  1989年   5篇
  1988年   6篇
  1987年   5篇
  1986年   4篇
  1985年   9篇
  1984年   10篇
  1983年   4篇
  1982年   5篇
  1981年   7篇
  1980年   4篇
  1979年   5篇
  1978年   3篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1969年   1篇
  1968年   2篇
排序方式: 共有902条查询结果,搜索用时 62 毫秒
51.
Run‐off from impervious surfaces has pervasive and serious consequences for urban streams, but the detrimental effects of urban stormwater can be lessened by disconnecting impervious surfaces and redirecting run‐off to decentralized green infrastructure. This study used a before–after‐control‐impact design, in which streets served as subcatchments, to quantify hydrologic effectiveness of street‐scale investments in green infrastructure, such as street‐connected bioretention cells, rain gardens and rain barrels. On the two residential treatment streets, voluntary participation resulted in 32.2% and 13.5% of parcels having green infrastructure installed over a 2‐year period. Storm sewer discharge was measured before and after green infrastructure implementation, and peak discharge, total run‐off volume and hydrograph lags were analysed. On the street with smaller lots and lower participation, green infrastructure installation succeeded in reducing peak discharge by up to 33% and total storm run‐off by up to 40%. On the street with larger lots and higher participation, there was no significant reduction in peak or total stormflows, but on this street, contemporaneous street repairs may have offset improvements. On the street with smaller lots, lag times increased following the first phase of green infrastructure construction, in which streetside bioretention cells were built with underdrains. In the second phase, lag times did not change further, because bioretention cells were built without underdrains and water was removed from the system, rather than just delayed. We conclude that voluntary green infrastructure retrofits that include treatment of street run‐off can be effective for substantially reducing stormwater but that small differences in design and construction can be important for determining the level of the benefit. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
52.
In situ analysis of a garnet porphyroblast from a granulite facies gneiss from Sør Rondane Mountains, East Antarctica, reveals discontinuous step‐wise zoning in phosphorus and large δ18O variations from the phosphorus‐rich core to the phosphorus‐poor rim. The gradually decreasing profile of oxygen isotope from the core (δ18O = ~15‰) to the rim (δ18O = ~11‰) suggests that the 18O/16O zoning was originally step‐wise, and modified by diffusion after the garnet rim formation at ~800°C and 0.8 GPa. Fitting of the 18O/16O data to the diffusion equation constrains a duration of the high‐T event (~800°C) to c. 0.5–40 Ma after the garnet rim formation. The low δ18O value of the garnet rim, together with the previously reported low δ18O values in metacarbonates, indicates regional infiltration, probably along a detachment fault, of low δ18O fluid/melt possibly derived from meta‐mafic to ultramafic rocks.  相似文献   
53.
To explore planetary evolution, we provide conductive cooling profiles that account for planet size, phonon diffusivity and various internal heating scenarios. Our new analytical solution for simple cooling of spheres reveals that heat is removed from only Earth's outermost ~1000 km over geological time. Numerical models with decaying heat production show that any upward concentration of radionuclides causes high temperatures at shallow depths, forcing interior temperatures to increase with time while producing a thermal gradient that forbids lower mantle convection. Hence, differentiation drives upper mantle magmatism and tectonics, leaving a quiescent but hot deep interior, while slowly melting the core.  相似文献   
54.
55.
56.
57.
58.
59.
We performed seismic waveform inversions and numerical landslide simulations of deep-seated landslides in Japan to understand the dynamic evolution of friction of the landslides. By comparing the forces obtained from a numerical simulation to those resolved from seismic waveform inversion, the coefficient of friction during sliding was well-constrained between 0.3 and 0.4 for landslides with volumes of 2–8 ×106 m3. We obtained similar coefficients of friction for landslides with similar scale and geology, and they are consistent with the empirical relationship between the volume and dynamic coefficient of friction obtained from the past studies. This hybrid method of the numerical simulation and seismic waveform inversion shows the possibility of reproducing or predicting the movement of a large-scale landslide. Our numerical simulation allows us to estimate the velocity distribution for each time step. The maximum velocity at the center of mass is 12–36 m/s and is proportional to the square root of the elevation change at the center of mass of the landslide body, which suggests that they can be estimated from the initial DEMs. About 20% of the total potential energy is transferred to the kinetic energy in our volume range. The combination of the seismic waveform inversion and the numerical simulation helps to obtain the well-constrained dynamic coefficients of friction and velocity distribution during sliding, which will be used in numerical models to estimate the hazard of potential landslides.  相似文献   
60.
We use a simple approach to estimate the present-day thermal regime along the northwestern part of the Western Indian Passive Margin, offshore Pakistan. A compilation of bottom borehole temperatures and geothermal gradients derived from new observations of bottom-simulating reflections (BSRs) allows us to constrain the relationship between the thermal regime and the known tectonic and sedimentary framework along this margin. Effects of basin and crustal structure on the estimation of thermal gradients and heat flow are discussed. A hydrate system is located within the sedimentary deep marine setting and compared to other provinces on other continental margins. We calculate the potential radiogenic contribution to the surface heat flow along a profile across the margin. Measurements across the continental shelf show intermediate thermal gradients of 38–44 °C/km. The onshore Indus Basin shows a lower range of values spanning 18–31 °C/km. The Indus Fan slope and continental rise show an increasing gradient from 37 to 55 °C/km, with higher values associated with the thick depocenter. The gradient drops to 33 °C/km along the Somnath Ridge, which is a syn-rift volcanic construct located in a landward position relative to the latest spreading center around the Cretaceous–Paleogene transition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号